试题

题目:
(2013·镇江二模)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答下列问题.在第n个图中,共有
n(n+1)
n(n+1)
块白块瓷砖.(用含n的代数式表示)
青果学院
答案
n(n+1)

解:第1个图中有白块瓷砖的块数为:2×1=2块;
第2个图中有白块瓷砖的块数为:3×2=(2+1)×2=6块;
第3个图中有白块瓷砖的块数为:4×3=(3+1)×3=12块;

第n个图中有白块瓷砖的块数为:n(n+1)块.
考点梳理
规律型:图形的变化类.
观察题中三个长方体中白块瓷砖所拼的图形是长方形,分析块数可知,所拼成长方形的长和宽都逐一增加.
解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.
压轴题;规律型.
找相似题