试题
题目:
如图所示,用火柴棍摆成第1个图形所需要的火柴棍的根数是4,摆成第2个图形所需要的火柴棍的根数是12,摆成第3个图形所需要的火柴棍的根数是24,按照此类图形的结构规律,摆成第4个图形所需要的火柴棍的根数是
40
40
,摆成第n个图形所需要的火柴棍的根数是
2n
2
+2n
2n
2
+2n
.(用含n的式子表示,结果可以不化简)
答案
40
2n
2
+2n
解:观察图形得:
第一个图形有4×1根火柴,
第二个图形有4×(1+2)根火柴,
第三个图形有4×(1+2+3)根火柴,
第四个图形有4×(1+2+3+4)=40根火柴,
…
第n个图形有4×(1+2+3+…+n)=2n
2
+2n根火柴,
故答案为:40,2n
2
+2n.
考点梳理
考点
分析
点评
规律型:图形的变化类.
观察图形得:第一个图形有4×1根火柴,第二个图形有4×(1+2)根火柴,第三个图形有4×(1+2+3)根火柴,据此规律求解即可.
本题是一个找规律的题,根据前几个图形中火柴棒的个数总结规律,用此规律求解在第n个图形中的火柴棒的个数.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
(2010·烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是
(20七0·温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是( )
(2008·聊城)如图是某广场用地板铺设的部分图案,中央是1块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( )