试题
题目:
如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有7个,
第10幅图中共有
19
19
个.
答案
19
解:第1幅图中有1个,
第2幅图中有3个,
第3幅图中有5个,
第4幅图中有7个,
…
第n副图中有(2n-1)个,
所以第10幅图中共有:2×10-1=20-1=19.
故答案为:19.
考点梳理
考点
分析
点评
专题
规律型:图形的变化类.
分别写出前几幅图中的菱形的个数,再根据后一副图比前一个副图多一个大菱形与一个小菱形共多2个菱形,写出第n副图的菱形的个数,代入数据n=10进行计算即可得解.
本题是对图形变化规律的考查,观察出后一幅图比前一幅图多两个菱形,从而找出规律得到第n副图的通式是解题的关键.
规律型.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
(2010·烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是
(20七0·温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是( )
(2008·聊城)如图是某广场用地板铺设的部分图案,中央是1块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( )