试题
题目:
图1是一个正方形,分别连接这个正方形的对边中点,得到图2;分别连接图2中右下角的小正方形对边中点,得到图3;再分别连接图3中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n个图的所有正方形个数是
4n-3
4n-3
个.
答案
4n-3
解:图1中,是1个正方形;
图2中,是1+4=5个正方形;
图3中,是1+4×2=9个正方形;
依此类推,第n个图的所有正方形个数是1+4(n-1)=4n-3.
考点梳理
考点
分析
点评
专题
规律型:图形的变化类.
本题图中的规律即是连接一次中点后,可增加四个正方形,以此类推,得出结论.
结合图形,应当能够发现:下一个图中的正方形个数总比前边的正方形个数多4,根据这一规律运用字母表示即可.
规律型.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
(2010·烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是
(20七0·温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是( )
(2008·聊城)如图是某广场用地板铺设的部分图案,中央是1块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( )