试题
题目:
两条平行直线上各有n个点,用这n对点按如下的规则连接线段;
①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;
②符合①要求的线段必须全部画出;
图1展示了当n=1时的情况,此时图中三角形的个数为0;
图2展示了当n=2时的一种情况,此时图中三角形的个数为2;
(1)当n=3时,请在图3中画出使三角形个数最少的图形,此时图中有
4
4
个三角形;
(2)试猜想当n对点时,按上述规则画出的图形中,最少有多少个三角形?此时最少三角形的个数能否为2010个?如果能n为多少?
答案
4
解:(1)
以上两种画图都正确(任其一种);
故答案为:4;
(2)解:当有n对点时,最少可以画2(n-1)个三角形,
2(n-1)=2010n=1006,
∴当n=1006时,最少可以画2010个三角形.
考点梳理
考点
分析
点评
规律型:图形的变化类.
(1)根据n=3时,在图3中画出使三角形个数最少的图形直接得出答案;
(2)根据数字规律可以得出当有n对点时,最少可以画2(n-1)个三角形,进而得出答案.
此题主要考查了数字规律性问题,根据图形画出符合要求的答案进而得出规律,此类知识是中考中重点题型同学们应学会应用.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
(2010·烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是
(20七0·温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是( )
(2008·聊城)如图是某广场用地板铺设的部分图案,中央是1块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( )