试题
题目:
(2013·绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线
OC
OC
上.
答案
OC
解:∵1在射线OA上,
2在射线OB上,
3在射线OC上,
4在射线OD上,
5在射线OE上,
6在射线OF上,
7在射线OA上,
…
每六个一循环,
2013÷6=335…3,
∴所描的第2013个点在射线和3所在射线一样,
∴所描的第2013个点在射线OC上.
故答案为:OC.
考点梳理
考点
分析
点评
规律型:图形的变化类.
根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上.
此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.
找相似题
(2011·盘锦)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2011次跳后它停在的点所对应的数为( )
(2011·南平)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为( )
(2010·烟台)如图,一串有趣的图案按一定的规律排列,请仔细观察,按此规律第2010个图案是
(20七0·温州)用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是( )
(2008·聊城)如图是某广场用地板铺设的部分图案,中央是1块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( )