试题
题目:
(2013·峨眉山市二模)如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:
2
≈1.41,
3
≈1.73)
答案
解:设货船速度为x海里/时,
4小时后货船在点B处,作PQ⊥AB于点Q.
由题意AP=56海里,PB=4x海里,
在直角三角形APQ中,∠APQ=60°,
所以PQ=28.
在直角三角形PQB中,∠BPQ=45°,
所以,PQ=PB×cos45°=2
2
x.
所以,2
2
x=28,
解得:x=7
2
≈9.9.
答:货船的航行速度约为9.9海里/时.
解:设货船速度为x海里/时,
4小时后货船在点B处,作PQ⊥AB于点Q.
由题意AP=56海里,PB=4x海里,
在直角三角形APQ中,∠APQ=60°,
所以PQ=28.
在直角三角形PQB中,∠BPQ=45°,
所以,PQ=PB×cos45°=2
2
x.
所以,2
2
x=28,
解得:x=7
2
≈9.9.
答:货船的航行速度约为9.9海里/时.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-方向角问题.
由已知可得AB⊥PQ,∠QAP=60°,∠A=30°,AP=56海里,要求货船的航行速度,即是求PB的长,可先在直角三角形APQ中利用三角函数求出PQ,然后利用三角函数求出PB即可.
本题考查了解直角三角形的应用中的方向角问题,两次运用了三角函数,并巧妙运用了两个三角形的公共边PQ.
行程问题.
找相似题
(2013·潍坊)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )
(2010·东阳市)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于( )
(2009·潍坊)如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为( )米.
(2009·泰安)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为( )
(2008·天门)如图,为了测量河两岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ACB=a,那么AB等于( )