试题
题目:
(2009·泰安)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为( )
A.
10
3
3
km
B.
5
3
3
km
C.
5
2
km
D.
5
3
km
答案
A
解:如图.由题意可知,AB=5km,∠2=30°,∠EAB=60°,∠3=30°.
∵EF∥PQ,
∴∠1=∠EAB=60°
又∵∠2=30°,
∴∠ABC=180°-∠1-∠2=180°-60°-30°=90°.
∴△ABC是直角三角形.
又∵MN∥PQ,
∴∠4=∠2=30°.
∴∠ACB=∠4+∠3=30°+30°=60°.
∴AC=
AB
sin∠ACB
=
5
3
2
=
10
3
3
(km).
故选A.
考点梳理
考点
分析
点评
解直角三角形的应用-方向角问题.
根据已知作图,由已知可得到△ABC是直角三角形,从而根据三角函数即可求得AC的长.
本题是方向角问题在实际生活中的运用,解答此类题目的关键是根据题意画出图形利用解直角三角形的相关知识解答.
找相似题
(2013·潍坊)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )
(2010·东阳市)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于( )
(2009·潍坊)如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为( )米.
(2008·天门)如图,为了测量河两岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ACB=a,那么AB等于( )
(2007·临沂)如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方位角为北偏东80°,测得C处的方位角为南偏东25°,航行1小时后到达C处,在C处测得A的方位角为北偏东20°,则C到A的距离是( )