试题
题目:
(2009·凉山州)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.
(1)MN是否穿过原始森林保护区,为什么?(参考数据:
3
≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需
将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
答案
解:(1)理由如下:
如图,过C作CH⊥AB于H.
设CH=x,
由已知有∠EAC=45°,∠FBC=60°,
则∠CAH=45°,∠CBA=30°.
在Rt△ACH中,AH=CH=x,
在Rt△HBC中,tan∠HBC=
CH
HB
∴
HB=
CH
tan30°
=
x
3
3
=
3
x
,
∵AH+HB=AB,
∴x+
3
x=600,
解得x=
600
1+
3
≈220(米)>200(米).
∴MN不会穿过森林保护区.
(2)设原计划完成这项工程需要y天,则实际完成工程需要(y-5)天.
根据题意得:
1
y-5
=(1+25%)×
1
y
解得:y=25.
经检验知:y=25是原方程的根.
答:原计划完成这项工程需要25天.
解:(1)理由如下:
如图,过C作CH⊥AB于H.
设CH=x,
由已知有∠EAC=45°,∠FBC=60°,
则∠CAH=45°,∠CBA=30°.
在Rt△ACH中,AH=CH=x,
在Rt△HBC中,tan∠HBC=
CH
HB
∴
HB=
CH
tan30°
=
x
3
3
=
3
x
,
∵AH+HB=AB,
∴x+
3
x=600,
解得x=
600
1+
3
≈220(米)>200(米).
∴MN不会穿过森林保护区.
(2)设原计划完成这项工程需要y天,则实际完成工程需要(y-5)天.
根据题意得:
1
y-5
=(1+25%)×
1
y
解得:y=25.
经检验知:y=25是原方程的根.
答:原计划完成这项工程需要25天.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-方向角问题;分式方程的应用.
(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;
(2)根据题意列方程求解.
考查了构造直角三角形解斜三角形的方法和分式方程的应用.
应用题.
找相似题
(2013·潍坊)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )
(2010·东阳市)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于( )
(2009·潍坊)如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为( )米.
(2009·泰安)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为( )
(2008·天门)如图,为了测量河两岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ACB=a,那么AB等于( )