试题
题目:
(2011·昭通)如图所示,若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船从A到B处需时间2
3
分钟,求该船的速度.
答案
解:如图,过点B作BC垂直河岸,垂足为C,
则在Rt△ACB中,有AB=
BC
sin∠BAC
=
900
sin60°
=600
3
,
因而速度v=
600
3
2
3
=300.
答:该船的速度为300米/分钟.
解:如图,过点B作BC垂直河岸,垂足为C,
则在Rt△ACB中,有AB=
BC
sin∠BAC
=
900
sin60°
=600
3
,
因而速度v=
600
3
2
3
=300.
答:该船的速度为300米/分钟.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-方向角问题.
解决此题的关键是求出AB的长,可过B作河对岸的垂线,在构建的直角三角形中,根据河岸的宽度即AB与河岸的夹角,通过解直角三角形求出AB的长,进而根据速度=路程÷时间得出结果.
此题考查的知识点是解直角三角形的应用,应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.
计算题.
找相似题
(2013·潍坊)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )
(2010·东阳市)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于( )
(2009·潍坊)如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为( )米.
(2009·泰安)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为( )
(2008·天门)如图,为了测量河两岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ACB=a,那么AB等于( )