试题

题目:
青果学院(2006·鄂州)如图,甲、乙两渔船同时从港口出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10
2
海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为
10+10
3
10+10
3
海里/小时.
答案
10+10
3

青果学院解:如图:乙沿南偏东30°方向航行则∠DOB=30°,甲沿南偏西75°方向航行,则∠AOD=75°,
当航行1小时后甲沿南偏东60°方向追赶乙船,则∠2=90°-60°=30°.
∵∠3=∠AOD=75°,
∴∠1=90°-75°=15°,
故∠1+∠2=15°+30°=45°.
过O向AB作垂线,则∠AOC=90°-∠1-∠2=90°-15°-30°=45°,
∵OA=10
2
,∠OAB=∠AOC=45°,
∴OC=AC=OA·sin45°=10
2
×
2
2
=10.
在Rt△OBC中,∠BOC=∠AOD+∠BOD-∠AOC=75°+30°-45°=60°,
∴BC=OC·tan60°=10
3

∴AB=AC+BC=10+10
3

因为OC=10海里,∠B=30°,所以OB=2OC=2×10=20,
乙船从O到B所用时间为20÷10=2小时,
由于甲从O到A所用时间为1小时,则从A到B所用时间为2-1=1小时,
甲船追赶乙船的速度为10+10
3
海里/小时.
考点梳理
解直角三角形的应用-方向角问题.
根据题意画图,过O向AB作垂线,根据特殊角的三角函数值求得AC、BC的值,从而求得AB的值.根据追及问题的求法求甲船追赶乙船的速度.
此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
找相似题