试题
题目:
如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB宽为( )
A.15m
B.
5
3
m
C.
10
3
m
D.
12
3
m
答案
A
解:过C作CE⊥AB,
Rt△ACE中,
∵∠CAD=60°,AC=15m,
∴∠ACE=30°,AE=
1
2
AC=
1
2
×15=7.5m,CE=AC·cos30°=15×
3
2
=
15
3
2
,
∵∠BAC=30°,∠ACE=30°,
∴∠BCE=60°,
∴BE=CE·tan60°=
15
3
2
×
3
=22.5m,
∴AB=BE-AE=22.5-7.5=15m.
故选A.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-方向角问题.
先过C作CE⊥AB,在Rt△ACE中,根据∠CAD=60°,AC=15m可得出∠ACE的度数及AE、CE的长,再根据∠BCA=30°可求出∠BCE的度数,由锐角三角函数的定义即可得出BE的长,进而可求出AB的长.
本题考查的是解直角三角形的应用-方向角问题,解答此题的关键是作出辅助线构造出直角三角形,利用三角形内角和定理及直角三角形的性质进行解答.
应用题.
找相似题
(2013·潍坊)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )
(2010·东阳市)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于( )
(2009·潍坊)如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为( )米.
(2009·泰安)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为( )
(2008·天门)如图,为了测量河两岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ACB=a,那么AB等于( )