试题
题目:
(2009·拱墅区一模)如图,小明同学在东西走向的文一路A处,测得一处公共自行车租用服务点P在北偏东60°方向上,在A处往东90米的B处,又测得该服务点P在北偏东30°方向上,则该服务点P到文一路的距离PC为( )
A.60
3
米
B.45
3
米
C.30
3
米
D.45米
答案
B
解:∵在Rt△PBC中,
PC
BC
=tan∠PBC
,
∴BC=
PC
tan60°
=
3
3
PC,
∵在Rt△PAC中,
PC
AC
=tan∠PAC
,
∴AC=
PC
tan30°
=
3
PC,
∵AB=AC-BC=90,
∴
3
PC-
3
3
PC=90,
解得:PC=45
3
.
故选B.
考点梳理
考点
分析
点评
专题
解直角三角形的应用-方向角问题.
分别在两个直角三角形中由锐角三角函数的定义用PC分别表示出AC、BC,利用两线段的差等于90列出关于线段PC的式子,求得PC即可.
本题考查了解直角三角形的知识,解决此题的关键是弄清直角三角形的三边与其锐角的关系,进而列出有关的等式,解之即可.
应用题.
找相似题
(2013·潍坊)一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )
(2010·东阳市)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=α,那么AB等于( )
(2009·潍坊)如图,小明要测量河内小岛B到河边公路l的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,则小岛B到公路l的距离为( )米.
(2009·泰安)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为( )
(2008·天门)如图,为了测量河两岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,∠ACB=a,那么AB等于( )