试题
题目:
如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为
(-1,0)
(-1,0)
或
(1,0)
(1,0)
时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).
答案
(-1,0)
(1,0)
解:∵点C在x轴上,∴点C的纵坐标是0,且当∠BOC=90°时,由点B、O、C组成的三角形与△AOB相似,即∠BOC应该与∠BOA=90°对应,
①当△AOB∽△COB,即OC与OA相对应时,则OC=OA=4,C(-4,0);
②当△AOB∽△BOC,即OC与OB对应,则OC=1,C(-1,0)或者(1,0).
故答案可以是:(-1,0);(1,0).
考点梳理
考点
分析
点评
相似三角形的判定;坐标与图形性质.
分类讨论:①当△AOB∽△COB时,求点C的坐标;②当△AOB∽△BOC时,求点C的坐标.
本题考查了相似三角形的判定、坐标与图形性质.解答此类题目时,首先判断由B、O、C三点组成的三角形形状,再利用两个三角形直角边与直角边对应关系的两种可能,分别求解.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )