试题
题目:
如图,AD是直角△ABC (∠C=90°)的角平分线,EF⊥AD于D,与AB及AC的延长线分别交于E,F,写出图中的一对全等三角形是
△AED和△AFD
△AED和△AFD
;一对相似三角形是
△AED和△DFC
△AED和△DFC
.
答案
△AED和△AFD
△AED和△DFC
解:∵AD是∠BAC的角平分线,∴∠DAE=∠DAF,
在△AED和△AFD中,
∠DAE=∠DAF
AD=AD
∠ADE=∠ADF=90°
,
∴△AED≌△AFD(ASA),
∴∠AED=∠DFC,
∵∠FDC+∠CDA=90°,∠CDA+∠CAD=90°,∠DAC=∠DAE,
∴∠FDC=∠DAE,
∴△AED∽△DFC(AA),
故答案为△AED≌△AFD、△AED∽△DFC.
考点梳理
考点
分析
点评
专题
相似三角形的判定;全等三角形的判定.
根据角对角线的性质可以求得∠DAE=∠DAF,易证△AED≌△AFD,得∠AED=∠DFC,再求得∠FDC=∠DAE即可判定△AED∽△DFC,即可解题.
本题考查了全等三角形的证明和全等三角形对应角相等的性质,考查了相似三角形的证明,本题中证明△AED≌△AFD是解题的关键.
证明题.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )