试题
题目:
如图:已知△ABC中,D是AB上一点,添加一个条件
∠ADC=∠ACB
∠ADC=∠ACB
,可使△ABC∽△ACD.
答案
∠ADC=∠ACB
解;由图可知∠CAD=∠BAC,再加一个对应角相等即可,
所以,可以为:∠ADC=∠ACB或∠ABC=∠ACD,
故答案为:∠ADC=∠ACB.
考点梳理
考点
分析
点评
专题
相似三角形的判定.
根据题目所给的条件,利用利用一个三角形的两个角与另一个三角形的两个角对应相等,即可得出答案.
此题主要考查学生对相似三角形的判定定理的理解和掌握,此题答案不唯一,属于开放型,大部分学生能正确做出,对此都要给予积极鼓励,以激发他们的学习兴趣.
开放型.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )