试题
题目:
(2004·广东)如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD于点E.
(1)求证:△CDE∽△FAE;
(2)当E是AD的中点,且BC=2CD时,求证:∠F=∠BCF.
答案
证明:(1)∵四边形ABCD是平行四边形
∴CD∥AB
∴△CDE∽△FAE;
(2)∵△CDE∽△FAE,DE=EA
∴△CDE≌△FAE
∴CD=AF,
∴BF=2CD
∵BC=2CD
∴BF=BC
∴∠F=∠BCF.
证明:(1)∵四边形ABCD是平行四边形
∴CD∥AB
∴△CDE∽△FAE;
(2)∵△CDE∽△FAE,DE=EA
∴△CDE≌△FAE
∴CD=AF,
∴BF=2CD
∵BC=2CD
∴BF=BC
∴∠F=∠BCF.
考点梳理
考点
分析
点评
专题
相似三角形的判定;全等三角形的判定与性质;平行四边形的性质.
(1)根据四边形ABCD是平行四边形就可以证明△CDE∽△FAE;
(2)根据(1)和E是AD的中点可以得到△CDE≌△FAE,然后根据全等三角形的性质可以证明题目结论.
此题主要考查相似三角形的判定及全等三角形的判定的理解及运用.
证明题.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )