试题

题目:
(2006·永州)如图⊙O的内接△ABC中,外角∠ACF的角平分线与⊙O相交于D点,DP⊥AC,垂足为P,DH⊥BF,青果学院垂足为H.问:
(1)∠PDC与∠HDC是否相等,为什么?
(2)图中有哪几组相等的线段?
(3)当△ABC满足什么条件时,△CPD∽△CBA,为什么?
答案
解:(1)答:相等.理由如下:
∵CD为∠ACF的角平分线(已知),
∴∠DCP=∠DCH,DP⊥AC,DH⊥BF.
∴∠DPC=∠DHC=90°.
∴∠PDC=∠HDC.

(2)PC=HC,DP=DH,AP=BH,AD=BD.

(3)∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.
∵∠CPD=90°,
∴∠ABC=90°.
∵CD为∠ACF的角平分线,∠PCD=∠DCF=∠ACB,
∴∠ACB=60°.
∴∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.
解:(1)答:相等.理由如下:
∵CD为∠ACF的角平分线(已知),
∴∠DCP=∠DCH,DP⊥AC,DH⊥BF.
∴∠DPC=∠DHC=90°.
∴∠PDC=∠HDC.

(2)PC=HC,DP=DH,AP=BH,AD=BD.

(3)∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.
∵∠CPD=90°,
∴∠ABC=90°.
∵CD为∠ACF的角平分线,∠PCD=∠DCF=∠ACB,
∴∠ACB=60°.
∴∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.
考点梳理
相似三角形的判定;全等三角形的判定与性质;圆周角定理.
(1)根据角平分线与垂线的性质证明角相等;
(2)发现全等三角形,根据全等三角形的对应边相等证明出线段相等;
(3)根据其中一个是直角三角形得到AC必须是直径.再根据另一对角对应相等,结合利用平角发现必须都是60°才可.
掌握全等三角形的判定和性质,能够根据已知的三角形的形状探索若相似应满足的条件.
几何综合题.
找相似题