试题
题目:
已知:如图,在△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,点E为AC上一点,过E点作AC的垂线,交CD的延长线于点F,与AB交于点G.求证:△ABC∽△FGD.
答案
证明:∵∠ACB=90°,CD⊥AB,
∴∠ACB=∠FDG=90°,
∵EF⊥AC,
∴∠FEA=90°,
∴∠FEA=∠BCA.
∴EF∥BC,
∴∠FGB=∠B,
∴△ABC∽△FGD.
证明:∵∠ACB=90°,CD⊥AB,
∴∠ACB=∠FDG=90°,
∵EF⊥AC,
∴∠FEA=90°,
∴∠FEA=∠BCA.
∴EF∥BC,
∴∠FGB=∠B,
∴△ABC∽△FGD.
考点梳理
考点
分析
点评
相似三角形的判定;垂线;平行线的判定与性质.
先通过证明∠FEA=∠BCA得到EF∥BC,所以∠FGB=∠B进而证明△ABC∽△FGD.
本题考查了垂线的性质、平行线的判定和平行线的性质以及相似三角形的判定,题目难度不大.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )