试题
题目:
(2009·禅城区模拟)如图,·ABCD中,E是CD的延长线上一点,BE与AD交于点F.证明:△ABF∽△CEB.
答案
证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AB∥CD,
∵AB∥CD,
∴∠ABF=∠E,
在△ABF和△CEB中,∠A=∠C,∠ABF=∠E,
∴△ABF∽△CEB.
证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AB∥CD,
∵AB∥CD,
∴∠ABF=∠E,
在△ABF和△CEB中,∠A=∠C,∠ABF=∠E,
∴△ABF∽△CEB.
考点梳理
考点
分析
点评
专题
相似三角形的判定;平行四边形的性质.
根据平行四边形对角相等可得∠A=∠C,对边平行可得AB∥CD,根据两直线平行,内错角相等得到∠ABF=∠E,然后利用两角对应相等,两三角形相似即可证明.
本题主要考查了平行四边形的性质,相似三角形的判定,找出对应角相等是证明的关键.
证明题.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )