试题
题目:
(2009·长宁区一模)如图,点O是△ABC的垂心(垂心即三角形三条高所在直线的交点),连接AO交CB的延长线于点D,连接CO交AB的延长线于点E,连接DE.求证:△ODE∽△OCA.
答案
证明:∵O是垂心,
∴AO⊥CD,
∴∠CDO=90°,
同理∠AEO=90°,
∴∠AEO=∠CDO,(3分)
在△AEO和△CDO中
∠AEO=∠CDO
∠O=∠O
,
∴△AEO∽△CDO,(3分)
∴
OE
OD
=
OA
OC
,
∴
OE
OA
=
OD
OC
,(2分)
在△ODE和△OCA中
OE
OA
=
OD
OC
∠O=∠O
,
∴△ODE∽△OCA.(2分)
证明:∵O是垂心,
∴AO⊥CD,
∴∠CDO=90°,
同理∠AEO=90°,
∴∠AEO=∠CDO,(3分)
在△AEO和△CDO中
∠AEO=∠CDO
∠O=∠O
,
∴△AEO∽△CDO,(3分)
∴
OE
OD
=
OA
OC
,
∴
OE
OA
=
OD
OC
,(2分)
在△ODE和△OCA中
OE
OA
=
OD
OC
∠O=∠O
,
∴△ODE∽△OCA.(2分)
考点梳理
考点
分析
点评
专题
相似三角形的判定.
欲证△ODE∽△OCA,通过观察发现两个三角形已经具备一组角对应相等,即∠O=∠O,可证△AEO∽△CDO,证得夹此对应角的两边对应成比例即可.
本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.
证明题.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )