试题

题目:
青果学院(2009·长宁区一模)如图,点O是△ABC的垂心(垂心即三角形三条高所在直线的交点),连接AO交CB的延长线于点D,连接CO交AB的延长线于点E,连接DE.求证:△ODE∽△OCA.
答案
证明:∵O是垂心,
∴AO⊥CD,
∴∠CDO=90°,
同理∠AEO=90°,
∴∠AEO=∠CDO,(3分)
在△AEO和△CDO中
∠AEO=∠CDO
∠O=∠O

∴△AEO∽△CDO,(3分)
OE
OD
=
OA
OC

OE
OA
=
OD
OC
,(2分)
在△ODE和△OCA中
OE
OA
=
OD
OC
∠O=∠O

∴△ODE∽△OCA.(2分)
证明:∵O是垂心,
∴AO⊥CD,
∴∠CDO=90°,
同理∠AEO=90°,
∴∠AEO=∠CDO,(3分)
在△AEO和△CDO中
∠AEO=∠CDO
∠O=∠O

∴△AEO∽△CDO,(3分)
OE
OD
=
OA
OC

OE
OA
=
OD
OC
,(2分)
在△ODE和△OCA中
OE
OA
=
OD
OC
∠O=∠O

∴△ODE∽△OCA.(2分)
考点梳理
相似三角形的判定.
欲证△ODE∽△OCA,通过观察发现两个三角形已经具备一组角对应相等,即∠O=∠O,可证△AEO∽△CDO,证得夹此对应角的两边对应成比例即可.
本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.
证明题.
找相似题