试题

题目:
青果学院(2008·南平)如图,D、E两点分别在AC、AB上,且DE与BC不平行,请填上一个你认为合适的条件:
∠1=∠B或∠2=∠C或AD:AB=AE:AC
∠1=∠B或∠2=∠C或AD:AB=AE:AC
,使得△ADE∽△ABC.
答案
∠1=∠B或∠2=∠C或AD:AB=AE:AC

解:∵∠EAD=∠CAB
∴当∠1=∠B或∠2=∠C或AD:AB=AE:AC时,△ADE∽△ABC.
考点梳理
相似三角形的判定.
△ADE和△ABC中,∠A为公共角,再找出一组对应角相等或者夹∠A的两边对应成比例就可以得到两三角形相似.
熟练掌握三角形相似的判定方法是解决本题的关键,也是本题考查的重点.
压轴题;开放型.
找相似题