试题
题目:
在△ABC中,D是AB上的一点,在AC上取一点E,要使△ADE与△ABC相似,则满足这样条件的E点共有( )
A.0个
B.1个
C.2个
D.无数个
答案
C
解:根据题意得:当DE∥BC时,△ADE∽△ABC;
当∠ADE=∠C时,由∠A=∠A,可得△ADE∽△ACB.
所以有2个.
故选C.
考点梳理
考点
分析
点评
专题
相似三角形的判定.
本题主要考查相似三角形的判定方法:有两个对应角相等的三角形相似.△ADE和△ABC中,有公共角∠A,因此只要作∠ADE=∠B或∠ADE=∠C,即可得出两三角形相似.
此题考查了相似三角形的判定.
①有两个对应角相等的三角形相似;
②有两个对应边的比相等,且其夹角相等,则两个三角形相似;
③三组对应边的比相等,则两个三角形相似.
常规题型.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )