试题

题目:
已知,如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD.
(1)求证:BE=CD;
(2)若M、N分别是BE和CD的中点,将△ADE绕点A按顺时针旋转,如图②所示,试证明在旋转过程中,△AMN是等腰三角形;
(3)试证明△AMN与△ABC和△ADE都相似.
青果学院
答案
证明:(1)∵∠BAC=∠DAE,
∴∠BAC+∠CAE=∠DAE+∠CAE,
即∠BAE=∠CAD.
在△ABE与△ACD中,
AB=AC
∠BAE=∠CAD
AE=AD

∴△ABE≌△ACD,
∴BE=CD;

(2)由(1)得△ABE≌△ACD,
∴∠ABE=∠ACD,BE=CD.
∵M,N分别是BE,CD的中点,
青果学院∴BM=CN.
在△ABM与△ACN中,
AB=AC
∠ABM=∠ACN
BM=CN

∴△ABM≌△ACN,
∴AM=AN,
∴△AMN为等腰三角形;

(3)由(2)得△ABM≌△ACN,
∴∠BAM=∠CAN,
∴∠BAM+∠BAN=∠CAN+∠BAN,
即∠MAN=∠BAC,
又∵AM=AN,AB=AC,
∴AM:AB=AN:AC,
∴△AMN∽△ABC;
∵AB=AC,AD=AE,
∴AB:AD=AC:AE,
又∵∠BAC=∠DAE,
∴△ABC∽△ADE;
∴△AMN∽△ABC∽△ADE.
证明:(1)∵∠BAC=∠DAE,
∴∠BAC+∠CAE=∠DAE+∠CAE,
即∠BAE=∠CAD.
在△ABE与△ACD中,
AB=AC
∠BAE=∠CAD
AE=AD

∴△ABE≌△ACD,
∴BE=CD;

(2)由(1)得△ABE≌△ACD,
∴∠ABE=∠ACD,BE=CD.
∵M,N分别是BE,CD的中点,
青果学院∴BM=CN.
在△ABM与△ACN中,
AB=AC
∠ABM=∠ACN
BM=CN

∴△ABM≌△ACN,
∴AM=AN,
∴△AMN为等腰三角形;

(3)由(2)得△ABM≌△ACN,
∴∠BAM=∠CAN,
∴∠BAM+∠BAN=∠CAN+∠BAN,
即∠MAN=∠BAC,
又∵AM=AN,AB=AC,
∴AM:AB=AN:AC,
∴△AMN∽△ABC;
∵AB=AC,AD=AE,
∴AB:AD=AC:AE,
又∵∠BAC=∠DAE,
∴△ABC∽△ADE;
∴△AMN∽△ABC∽△ADE.
考点梳理
相似三角形的判定;全等三角形的判定与性质;等腰三角形的判定.
(1)因为∠BAC=∠DAE,所以∠BAE=∠CAD,又因为AB=AC,AD=AE,利用SAS可证出△ABE≌△ACD,进而可得BE=CD;
(2)由(1)中△ABE≌△ACD,可得对应边、对应角相等,进而得出△ABM≌△ACN,即可得出结论;
(3)先由(2)中△ABM≌△ACN,可得∠BAM=∠CAN,所以∠MAN=∠BAC,又因为AM:AB=AN:AC,利用两组对应边的比相等且相应的夹角相等的两个三角形相似,证出△AMN∽△ABC;同理证出△ABC∽△ADE,即可得出△AMN∽△ABC∽△ADE.
本题主要考查了全等三角形的判定与性质,等腰三角形的判定,旋转的性质,相似三角形的判定,综合性较强,难度中等.熟练掌握全等三角形及相似三角形的判定方法是解题的关键.
找相似题