试题
题目:
在矩形ABCD中,AB=8,AD=6,E为AB边上一点,连接DE,过C作CF垂直DE.
(1)求证:△CDF∽△DEA;
(2)若设CF=x,DE=y,求y与x的函数解析式.
答案
(1)证明:∵四边形ABCD是矩形,
∴∠A=∠ADC=90°AB=CD.
∵CF垂直DE,
∴∠CFD=90°.
∴∠CFD=∠A.
∠DCF+∠CDF=90°,∠ADE+∠CDF=90°.
∴∠DCF=∠ADE.
∴△CDF∽△DEA.
(2)解:∵△CDF∽△DEA,
∴
CD
DE
=
CF
AD
.
∴
8
y
=
x
6
.
∴
y=
48
x
.(4分)
(1)证明:∵四边形ABCD是矩形,
∴∠A=∠ADC=90°AB=CD.
∵CF垂直DE,
∴∠CFD=90°.
∴∠CFD=∠A.
∠DCF+∠CDF=90°,∠ADE+∠CDF=90°.
∴∠DCF=∠ADE.
∴△CDF∽△DEA.
(2)解:∵△CDF∽△DEA,
∴
CD
DE
=
CF
AD
.
∴
8
y
=
x
6
.
∴
y=
48
x
.(4分)
考点梳理
考点
分析
点评
专题
相似三角形的判定;根据实际问题列反比例函数关系式;矩形的性质.
(1)要求的两个相似三角形中,已有一对直角对应相等,可利用垂直得到其余一组锐角相等即可得到相似.
(2)利用相似求得函数关系式.
本题考查的知识点是:两角对应相等,两三角形相似.相似三角形的对应边成比例.
几何综合题.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )