一次函数综合题;矩形的性质;翻折变换(折叠问题);相似三角形的判定.
(1)根据折叠知∠CDE=∠B=90°,根据等角的余角相等得到∠CDO=∠AED,再结合一对直角,即可证明两个三角形相似;
(2)首先应求得点E的坐标,根据折叠知DE=BE,根据
tan∠EDA=,设AE=3t,则AD=4t,再根据勾股定理表示出DE=5t,即BE=5t,所以OC=AB=8t,再根据(1)中的两个相似三角形得到CD=10t,从而在直角三角形CDE中,根据勾股定理列方程计算.求得点E的坐标后,用待定系数法求得直线CE的解析式,再进一步求得与x轴的交点P的坐标.
掌握相似三角形的性质和判定,能够熟练运用勾股定理、锐角三角函数的概念、待定系数法求得函数的解析式.
综合题.