试题
题目:
已知:如图,在△ABC中,∠BAC的平分线AE交BC于点D,连接EC,且∠B=∠E.
求证:△EAC∽△ECD.
答案
证明:∵∠BAC的平分线AE交BC于点D,
∴∠BAD=∠CAE,
又∵∠B=∠E,
∴180°-∠B-∠BAE=180°-∠CAE-∠E,
∴∠BDA=∠ACE,
∵∠CDE=∠ADB,
∴∠CDE=∠ACE,
∵∠E=∠E,
∴△EAC∽△ECD.
证明:∵∠BAC的平分线AE交BC于点D,
∴∠BAD=∠CAE,
又∵∠B=∠E,
∴180°-∠B-∠BAE=180°-∠CAE-∠E,
∴∠BDA=∠ACE,
∵∠CDE=∠ADB,
∴∠CDE=∠ACE,
∵∠E=∠E,
∴△EAC∽△ECD.
考点梳理
考点
分析
点评
专题
相似三角形的判定.
利用角平分线的性质得出∠BAD=∠CAE,再利用三角形内角和定理得出∠BDA=∠ACE,进而得出∠CDE=∠ACE,利用相似三角形判定得出即可.
此题主要考查了相似三角形的判定与性质,利用已知得出∠CDE=∠ACE是解题关键.
证明题.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )