试题
题目:
在△ABC中,BD、CE分别为三角形的两条高交于点O.
(1)问图中有
6
6
对相似三角形;
(2)连接DE,△ADE与△ABC是否相似,如果相似请给予证明;若不相似请说明理由.
答案
6
解:(1)图中有△ABD∽△ACE,△BOE∽△COD,△COD∽△ACE,△COD∽△ABD,△BOE∽△BDA,△BOE∽△CAE,6对三角形相似.
故答案为:6.
(2)证明:
∵∠A=∠A,∠AEC=∠ADB=90°,
∴△AEC∽△ADB,
∴
AE
AD
=
AC
AB
,
∴
AE
AC
=
AD
AB
,
∵∠A=∠A,
∴△ADE∽△ABC.
考点梳理
考点
分析
点评
相似三角形的判定.
(1)根据两组对角对应相等的两个三角形互为相似相似三角形,两组对边对应成比例,以及夹角相等的两个三角形,互为相似三角形.
(2)连接DE,先证明△AEC∽△ADB,证明出两组对边成比例,且夹角是公共角,从而求出△ADE∽△ABC.
本题考查相似三角形的判定定理,关键知道两组对角对应相等的两个三角形互为相似相似三角形,两组对边对应成比例,以及夹角相等的两个三角形,互为相似三角形.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )