试题

题目:
青果学院如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N,P、Q分别为
AM
BM
上一点(不与端点重合),如果∠MNP=∠MNQ,下列结论不成立的是(  )



答案
C
青果学院解:延长QN交圆O于C,延长MN交圆O于D,如图
MN⊥AB,∠MNP=∠MNQ,则∠1=∠2,所以A对;
因为AB是⊙O的直径,MN⊥AB,
AM
=
DA

由∠1=∠2,∠ANC=∠2,
∴∠1=∠ANC,
得P,C关于AB对称,
PA
=
AC

PD
=
MC
,所以∠Q=∠PMN,B对;
∠P+∠PMN<180°,所以∠P+∠Q<180°,C错;
因为∠MNP=∠MNQ,∠Q=∠PMN,
所以△PMN∽△MQN,则有MN2=PN·QN,所以D对.
故选C.
考点梳理
圆心角、弧、弦的关系;三角形内角和定理;垂径定理;圆周角定理;相似三角形的判定.
利用等角的余角相等得到A对.利用垂径定理,同弧所对的圆周角相等得B对.利用三角形内角和定理得C错.利用三角形相似得D对.
记住等角的余角相等和三角形内角和定理.熟练掌握垂径定理和圆周角定理及其推论,三角形相似的判定定理.
几何综合题.
找相似题