试题
题目:
如图所示,AB、CD相交于点0,连接AC,BD,添加下列一个条件后,仍不能判定△AOC∽△DOB的是( )
A.∠A=∠D
B.
AO
OD
=
OC
OB
C.∠B=∠C
D.
AC
BD
=
AO
OD
答案
D
解:由图可得,∠AOC=∠BOD,所以要使△AOC∽△DOB,只需再添加一个对应角相等或其对应边成比例即可,
所以题中选项A、B、C均符合题意,
而D选项中AC与AO的夹角并不是∠AOC,所以其不能判定两个三角形相似.
故选D.
考点梳理
考点
分析
点评
专题
相似三角形的判定.
要使△AOC∽△DOB,只需再添加一个对应角相等或其对应边成比例即可,而对应边所夹的角则必是其相等的角,否则不能得到其相似.
本题主要考查了相似三角形的判定问题,能够熟练掌握.
常规题型.
找相似题
(2013·贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( )
(2012·徐州)如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=
1
4
BC.图中相似三角形共有( )
(2012·牡丹江)如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有( )
(2011·永州)下列说法正确的是( )
(2011·无锡)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是( )