试题

题目:
青果学院如图,D在△ABC的边AB上,过D作直线(不与AB重合)截△ABC,使得所截三角形与原三角形相似,满足这样条件的直线最多有(  )条.



答案
B
青果学院解:如图:过D作直线DE∥BC,交AC于E;作DF∥AC,交BC于F;
过D作直线DG,交AC于G,使得∠ADG=∠C;同理可作直线DH,交BC于H,使得∠BDH=∠C;
因此符合条件的直线共有4条.
故选B
考点梳理
相似三角形的判定.
根据相似三角形的判定方法可知:以AD为边,作∠ADM=∠B或∠C即可得出△ADM∽△ABC或△ADM∽△ACB;同理以BC为边也可得出两种作法,因此满足条件的直线共有4条.
此题考查了相似三角形的判定:
①有两个对应角相等的三角形相似;
②有两个对应边的比相等,且其夹角相等,则两个三角形相似;
③三组对应边的比相等,则两个三角形相似.
找相似题