试题
题目:
(2003·陕西)如图,正方形ABCD是⊙O的内接正方形,延长BA到E,使AE=AB,连接ED.
(1)求证:直线ED是⊙O的切线;
(2)连接EO交AD于点F,求证:EF=2FO.
答案
证明:(1)连接OD.
∵四边形ABCD为正方形,AE=AB.
∴AE=AB=AD,∠EAD=∠DAB=90°,
∴∠EDA=45°,∠ODA=45°,
∴∠ODE=∠ADE+∠ODA=90°,
∴直线ED是⊙O的切线.
(2)作OM⊥AB于M,
∵O为正方形的中心,
∴M为AB中点,
∴AE=AB=2AM,AF∥OM,
∴
EF
FO
=
AE
AM
=2,
∴EF=2FO.
证明:(1)连接OD.
∵四边形ABCD为正方形,AE=AB.
∴AE=AB=AD,∠EAD=∠DAB=90°,
∴∠EDA=45°,∠ODA=45°,
∴∠ODE=∠ADE+∠ODA=90°,
∴直线ED是⊙O的切线.
(2)作OM⊥AB于M,
∵O为正方形的中心,
∴M为AB中点,
∴AE=AB=2AM,AF∥OM,
∴
EF
FO
=
AE
AM
=2,
∴EF=2FO.
考点梳理
考点
分析
点评
专题
正多边形和圆;切线的判定;平行线分线段成比例.
(1)连接OD,只需证明OD⊥DE.根据正方形的性质得到AE=AD,则∠ADE=45°.又∠ADO=45°则证明了结论;
(2)作OM⊥AB于M.根据平行线分线段成比例定理进行证明.
综合运用正多边形的性质和平行线分线段成比例定理.
几何综合题.
找相似题
(2010·鞍山)如图,设M、N分别是直角梯形ABCD两腰AD、CB的中点,DE上AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE:BE等于( )
(2004·襄阳)在△ABC中,BE平分∠ABC交AC于点E,ED∥CB交AB于点D,已知:AD=1,DE=2,则BC的长为( )
(2002·烟台)如图,△ABC中,已知MN∥BC,DN∥MC.小红同学由此得出了以下四个结论:
(1)
AN
CN
=
AM
AB
;(2)
AD
DM
=
DN
MC
;(3)
AM
MB
=
AN
NC
;(4)
DN
MC
=
MN
BC
.
其中正确结论的个数为( )
(2002·嘉兴)如图,l
1
∥l
2
∥l
3
,已知AB=6cm,BC=3cm,A
1
B
1
=4cm,则线段B
1
C
1
的长度为( )
(2002·海南)如图,已知梯形ABCD中,AD∥BC,对角线AC、BD分别交中位线EF于点H、G,且EG:GH:HF=1:2:1,那么AD:BC等于( )