试题
题目:
(2002·海南)如图,已知梯形ABCD中,AD∥BC,对角线AC、BD分别交中位线EF于点H、G,且EG:GH:HF=1:2:1,那么AD:BC等于( )
A.2:3
B.3:5
C.1:3
D.1:2
答案
C
解:根据平行线分线段成比例定理可得:EG、GF分别是△ABD和△DBC的中位线.
那么AD=2EG,BC=2GF.
∴AD:BC=(2×1):[2×(2+1)]=1:3
故选C
考点梳理
考点
分析
点评
专题
三角形中位线定理;梯形;平行线分线段成比例.
根据三角形的中位线定理,把AD和BC都与EG联系起来求解.
本题应用的知识点为:一组平行线在一条直线上截得的线段相等,在其他直线上截得的线段也相等.三角形的中位线等于三角形第三边的一半.
压轴题.
找相似题
(2010·鞍山)如图,设M、N分别是直角梯形ABCD两腰AD、CB的中点,DE上AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE:BE等于( )
(2004·襄阳)在△ABC中,BE平分∠ABC交AC于点E,ED∥CB交AB于点D,已知:AD=1,DE=2,则BC的长为( )
(2002·烟台)如图,△ABC中,已知MN∥BC,DN∥MC.小红同学由此得出了以下四个结论:
(1)
AN
CN
=
AM
AB
;(2)
AD
DM
=
DN
MC
;(3)
AM
MB
=
AN
NC
;(4)
DN
MC
=
MN
BC
.
其中正确结论的个数为( )
(2002·嘉兴)如图,l
1
∥l
2
∥l
3
,已知AB=6cm,BC=3cm,A
1
B
1
=4cm,则线段B
1
C
1
的长度为( )
(1999·青岛)如图,AD是△ABC的角平分线,⊙O过点A且和BC相切于点D,和AB、AC分别交于点E,F,如果BD=AE,且BE=a,CF=b,则AF的长为( )