答案

解:作AG∥BC交BE延长线于点G,作DH∥AB交CF于点H,
则得:
AG:BC=AE:EC=1:2,AG:BD=3:4,
又由于DH:BF=1:3,DH:AF=1:6,
所以DR:AR=1:6,DR:DA=1:7,
从而S
△CDR=
S
△BFC=
S
△ABC,
因此S
△PQR:S
△ABC=1:7.

解:作AG∥BC交BE延长线于点G,作DH∥AB交CF于点H,
则得:
AG:BC=AE:EC=1:2,AG:BD=3:4,
又由于DH:BF=1:3,DH:AF=1:6,
所以DR:AR=1:6,DR:DA=1:7,
从而S
△CDR=
S
△BFC=
S
△ABC,
因此S
△PQR:S
△ABC=1:7.