试题
题目:
(2011·凉山州)如图,圆柱底面半径为2cm,高为9πcm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为
15π
15π
cm.
答案
15π
解:圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;
即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;
∵圆柱底面半径为2cm,
∴长方形的宽即是圆柱体的底面周长:2π×2=4πcm;
又∵圆柱高为9πcm,
∴小长方形的一条边长是3πcm;
根据勾股定理求得AC=CD=DB=5πcm;
∴AC+CD+DB=15πcm;
故答案为:15π.
考点梳理
考点
分析
点评
专题
平面展开-最短路径问题;圆柱的计算.
要求圆柱体中两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.
本题主要考查了圆柱的计算、平面展开--路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.
几何图形问题;压轴题.
找相似题
(2012·雅安)圆柱形水桶的底面周长为3.2πm,高为0.6m,它的侧面积是( )
(2012·台湾)有一段树干为一直圆柱体,其底面积为9π平方公尺,高为15公尺.若将此树干分为两段圆柱形树干,且体积比为2:1,则体积较大的树干,其侧面的表面积为多少平方公尺?( )
(2011·玉溪)如图,是一个有盖子的圆柱体水杯,底面周长为6πcm,高为18cm,若盖子与杯体的重合部分忽略不计,则制作10个这样的水杯至少需要的材料是( )
(2011·北海)若一个圆柱的底面半径是1,高是3,则该圆柱的侧面展开图的面积是( )
(2009·台湾)如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm
2
、100cm
2
,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,求甲的容积为何( )