试题

题目:
青果学院(2011·宛城区一模)如图,在梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,以A为圆心,AD为半径的圆与BC边相切于点M,与AB交于点E,将扇形A-DME剪下围成一个圆锥,则圆锥的底面半径为
3
4
3
4

答案
3
4

青果学院解:连接AM,过点D作DF⊥BC,垂足为F,
∴四边形ADFM为矩形,
∴FM=AD,
∵AD=2,
∴FM=2,
∵AB=CD,BC=6,
∴BM=CF=
1
2
(BC-MF)=
1
2
×4=2,
∴∠BAM=45°,
∴∠BAD=135°,
∴l=
135π×2
180
=
2

∴2πr=
2

∴r=
3
4

故答案为
3
4
考点梳理
圆锥的计算;梯形;切线的性质.
连接AM,过点D作DF⊥BC,垂足为F,可求得∠BAD=135°,根据扇形的弧长等于圆锥的底面周长.从而得出答案.
本题考查了等腰梯形的性质、切线的性质、圆锥的计算,是基础知识要熟练掌握.
计算题.
找相似题