试题
题目:
圆锥的侧面积恰好等于其底面积的2倍,则该圆锥的侧面展开图所对应的扇形圆心角的度数为
180°
180°
.
答案
180°
解:设母线长为R,圆锥侧面展开图所对应扇形圆心角的度数为n,底面半径为r,
∴底面周长=2πr,底面面积=πr
2
,侧面积=
1
2
×2πr×R=πRr=2×πr
2
,
∴R=2r,
∵
nπR
180
=2πr=πR,
∴n=180°.
故答案为:180°.
考点梳理
考点
分析
点评
专题
圆锥的计算.
设出圆锥的母线长和底面半径,利用圆锥的侧面积等于其底面积的2倍,得到圆锥底面半径和母线长的关系,然后利用圆锥侧面展开图的弧长=底面周长即可得到圆锥侧面展开图所对应扇形圆心角的度数.
本题考查了圆锥的计算,利用了扇形的面积公式,圆的面积公式,弧长公式,圆的周长公式求解.
计算题.
找相似题
(2013·遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )
(2013·绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是( )
(2013·南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为( )
(2013·南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是( )
(2013·莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )