试题
题目:
如图,底面圆半径为3,圆锥的高为4,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是多少?
答案
解:∵底面圆半径为3,圆锥的高为4,
∴PA=5,
由题意知底面圆的直径=6,
故底面周长等于6π.
设圆锥的侧面展开后的扇形圆心角为n°,
根据底面周长等于展开后扇形的弧长得6π=
nπ×5
180
,
解得:n=216°,
所以展开图中的圆心角为216°,
则它爬行的最短路线长为:PA+PC=5+5=10.
解:∵底面圆半径为3,圆锥的高为4,
∴PA=5,
由题意知底面圆的直径=6,
故底面周长等于6π.
设圆锥的侧面展开后的扇形圆心角为n°,
根据底面周长等于展开后扇形的弧长得6π=
nπ×5
180
,
解得:n=216°,
所以展开图中的圆心角为216°,
则它爬行的最短路线长为:PA+PC=5+5=10.
考点梳理
考点
分析
点评
平面展开-最短路径问题;圆锥的计算.
要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.
此题主要考查了平面展开图最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.
找相似题
(2013·遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )
(2013·绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是( )
(2013·南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为( )
(2013·南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是( )
(2013·莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )