试题

题目:
青果学院(2012·邯郸二模)如图,圆锥的轴截面△ABC是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径BC=4cm,母线AB=6cm,则由点B出发,经过圆锥的侧面到达母线AC的最短路程是(  )



答案
C
青果学院解:沿母线AB把圆锥展开,如图,
过B作BD⊥AC′于D,
弧BC′=
1
2
·2π·2=2π,
设∠C′AB=n°,
∴2π=
nπ·6
180

∴n=60,即∠DAB=60°,
在Rt△ADB中,AD=
1
2
AB=
1
2
×6=3,
∴BD=
3
AD=3
3

所以由点B出发,经过圆锥的侧面到达母线AC的最短路程为3
3
cm.
故选C.
考点梳理
圆锥的计算;平面展开-最短路径问题.
沿母线AB把圆锥展开,过B作BD⊥AC′于D,根据两点之间线段最短,得到由点B出发,经过圆锥的侧面到达母线AC的最短路程为BD,BC′弧长为圆锥底面圆的周长的一半,再根据弧长公式计算出∠DAB,最后解Rt△ADB,即可得到BD.
本题考查了圆锥的展开图的有关计算:展开图为扇形,弧长为圆锥底面圆的周长,半径为圆锥的母线长.也考查了把立体图形中的问题转化为平面图形来解决.
计算题;压轴题.
找相似题