试题
题目:
(2006·孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为( )
A.
3
2
r
B.
3
3
2
r
C.
3
3
r
D.
3
3
r
答案
B
解:由题意知,底面圆的直径为2r,故底面周长等于2rπ,
设圆锥的侧面展开后的扇形圆心角为n°,
根据底面周长等于展开后扇形的弧长得,2rπ=
nπ·3r
180
,
解得n=120,
所以展开图中扇形的圆心角为120°,
∴∠AOA′=120°,
∴∠1=60°,
过C作CF⊥OA,
∵C为OB中点,BO=3r,
∴OC=
3
2
r,
∵∠1=60°,
∴∠OCF=30°,
∴FO=
3
4
r,
∴CF
2
=CO
2
-OF
2
=
27
16
r
2
,
∵AO=3r,FO=
3
4
r,
∴AF=
9
4
r,
∴AC
2
=AF
2
+FC
2
=
27
16
r
2
+
81
16
r
2
═
27
4
r
2
,
∴AC=
3
3
r
2
,
故选B.
考点梳理
考点
分析
点评
专题
平面展开-最短路径问题;弧长的计算;圆锥的计算.
要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.
圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.
压轴题.
找相似题
(2013·遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )
(2013·绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是( )
(2013·南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为( )
(2013·南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是( )
(2013·莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )