试题

题目:
(1999·辽宁)△ABC的内切圆⊙O和各边分别相切于D,E,F,则O是△DEF的(  )



答案
D
解:∵⊙O是△ABC的内切圆,
∴OD=OE=OF,
∴点O是△DEF的外心,
∴O是△DEF三边垂直平分线的交点;
故选D.
考点梳理
三角形的内切圆与内心.
由题意知点O是△ABC的内心,因此OD=OE=OF,所以点O也是△DEF的外心,而外心是三角形三边中垂线的交点,由此得解.
此题主要考查了三角形的内心与外心的性质;
三角形的内心:三条角平分线的交点,到三角形三边的距离相等;
三角形的外心:三边中垂线的交点,到三角形三个顶点的距离相等.
找相似题