试题
题目:
求不超过
(
7
+
5
)
6
的值的最大整数.
答案
解:
(
7
+
5
)
2
=12+2
35
.
(
7
+
5
)
4
=
(12+2
35
)
2
=144+48
35
+140=284+48
35
.
(
7
+
5
)
6
=(12+2
35
)(284+48
35
),
=3408+576
35
+568
35
+3360,
=6768+1144
35
,
≈13535.9.
∴最大整数值为13535.
解:
(
7
+
5
)
2
=12+2
35
.
(
7
+
5
)
4
=
(12+2
35
)
2
=144+48
35
+140=284+48
35
.
(
7
+
5
)
6
=(12+2
35
)(284+48
35
),
=3408+576
35
+568
35
+3360,
=6768+1144
35
,
≈13535.9.
∴最大整数值为13535.
考点梳理
考点
分析
点评
专题
二次根式的化简求值;多项式乘多项式;完全平方公式.
先用完全平方公式计算出
(
7
+
5
)
2
的值,再用多项式乘以多项式的法则计算,然后根据
35
的值,确定代数式的最大整数.
本题考查的是二次根式的化简求值,用完全平方公式求出
(
7
+
5
)
2
和
(
7
+
5
)
4
的值,然后用多项式的乘法法则进行计算,根据
35
的近似值确定代数式的最大值.
计算题.
找相似题
(2005·十堰)已知x=
1
2
-1
,则
x
-1
x
·(1+
1
x
)的值是( )
(2004·宁夏)已知x=
3
-
2
,那么x+
1
x
的值等于( )
(2003·天津)若x=
2
+1,则x+
1
x
的值为( )
(2000·绍兴)已知:
a=3-
2
,
b=3+
2
,则代数式(3a
2
-18a+15)(2b
2
-12b+13)的值是( )
(1998·东城区)若x=2-
5
,则代数式x
2
-4x-2的值为( )