试题
题目:
如图,已知AB=4,BC=3,AD=12,DC=13,∠B=90°,则四边形ABCD的面积为
36
36
.
答案
36
解:连接AC,
∵∠B=90°
∴AC
2
=AB
2
+BC
2
=16+9=25
∵AD
2
=144,DC
2
=169
∴AC
2
+AD
2
=DC
2
∴CA⊥AD
∴S
四ABCD
=S
△ABC
+S
△ACD
=
1
2
×
3
×
4+
1
2
×12
×
5=36.
考点梳理
考点
分析
点评
专题
勾股定理的逆定理.
连接AC,先根据直角三角形的性质得到AC边的长度,再根据三角形ACD中的三边关系可判定△ACD是Rt△,把四边形分成两个直角三角形即可求得面积.
主要考查了利用勾股定理的逆定理判定直角三角形的方法.本题还要注意通过作辅助线的方法把不规则的四边形分割成三角形是常用的解题方法,要熟练掌握.
应用题.
找相似题
如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,则这个三角形为
直角三角形
直角三角形
.
已知a、b、c是△ABC的三边长,且满足|c
2
-a
2
-b
2
|+(a-b)
2
=0,则△ABC的形状是
等腰直角三角形
等腰直角三角形
.
已知梯形的上下底长分别是1.5cm和3.5cm,两条对角线的长分别是3cm和4cm,则此梯形的面积是
6
6
cm
2
.
如图,P是等边△ABC内一点,且PA=5,PC=12,PB=13,若△APB绕点A逆时针旋转60°后,得到△AP
1
C,则∠AP
1
C=
150°
150°
.
已知△ABC中,AB=10,AC=6,BC=8,若三条内角平分线交于点O,OG⊥AB于G,则AG的长度为
4
4
.