试题
题目:
(2006·青岛)如图,P是正△ABC内一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与P′之间的距离为PP′=
6
6
,∠APB=
150
150
度.
答案
6
150
解:方法一:
连接PP',由旋转可知:△P'AB≌△PAC,
所以∠CAP=∠BAP',AP=AP'=6,CP=BP'=10
又∵∠CAP+∠PAB=60°,
∴∠P'AP=∠BAP'+∠BAP=60°,
∴△P'AP是等边三角形,
∴AP=AP'=PP'=6,∠APP'=60°,
∵6
2
+8
2
=10
2
,
∴P'P
2
+PB
2
=P'B
2
,
∴△P'PB是直角三角形,
∴∠P'PB=90°
∴∠APB=∠P'PB+∠APP'=150°.
方法二:
连接PP′,
∵PA=6,PB=8,PC=P′B=10,
∵∠PAP′=60°,
∴P′A=PP′=PA=6,
∴P′B=PC=10,
∴∠P′PB=90°,
∴∠APB=90°+60°=150°.
考点梳理
考点
分析
点评
专题
勾股定理的逆定理;旋转的性质.
连接PP′,根据旋转的性质及已知可得到△APP′是等边三角形,△BPP′是直角三角形,从而不难求解.
本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
压轴题.
找相似题
如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,则这个三角形为
直角三角形
直角三角形
.
已知a、b、c是△ABC的三边长,且满足|c
2
-a
2
-b
2
|+(a-b)
2
=0,则△ABC的形状是
等腰直角三角形
等腰直角三角形
.
已知梯形的上下底长分别是1.5cm和3.5cm,两条对角线的长分别是3cm和4cm,则此梯形的面积是
6
6
cm
2
.
如图,P是等边△ABC内一点,且PA=5,PC=12,PB=13,若△APB绕点A逆时针旋转60°后,得到△AP
1
C,则∠AP
1
C=
150°
150°
.
已知△ABC中,AB=10,AC=6,BC=8,若三条内角平分线交于点O,OG⊥AB于G,则AG的长度为
4
4
.