试题

题目:
已知a、b、c是△ABC的三边,且满足a4+b2c2=b4+a2c2,试判断△ABC的形状.阅读下面解题过程:
解:由a4+b2c2=b4+a2c2得:
a4-b4=a2c2-b2c2
(a2+b2)(a2-b2)=c2(a2-b2)         ②
即a2+b2=c2
∴△ABC为Rt△.                ④
试问:以上解题过程是否正确:
不正确
不正确

若不正确,请指出错在哪一步?(填代号)

错误原因是
漏掉了a=b时的情况
漏掉了a=b时的情况

本题的结论应为
△ABC为等腰三角形或直角三角形
△ABC为等腰三角形或直角三角形

答案
不正确


漏掉了a=b时的情况

△ABC为等腰三角形或直角三角形

解:由a4+b2c2=b4+a2c2得:
a4-b4=a2c2-b2c2
(a2+b2)(a2-b2)=c2(a2-b2),
∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
∴(a2-b2)(a2+b2-c2)=0,
∴(a2-b2)=0或a2+b2-c2=0,
∴△ABC为等腰三角形或直角三角形.
考点梳理
勾股定理的逆定理.
由于②到③时等式两边都除以了a2-b2,如果a2-b2=0,根据等式的性质可知,此时不一定有③成立.
本题主要考查了等式的性质以及等腰三角形、直角三角形的判定.
等式的性质:等式的两边乘以或除以同一个不等于0的数,所得结果仍是等式.
压轴题;阅读型.
找相似题