试题

题目:
在△ABC中,AB=5,BC=3,AC=4,若点P是△ABC边上的一点,且使△BCP是边长为3的等腰三角形,求△BPC的周长.
答案
解:①当P在AC边上,CP=CB=3,
∴BP=
9+9

∴△BPC的周长为6+3
2


②P在AB边上,若BC=BP,
∴BP=3,CP=
6
5
5

∴△BPC的周长为6+
6
5
5

若PC=PB,
∴CP=3,BP=3.6;
∴△BPC的周长为9.6;
③若P在BC的垂直平分线上,
设BC的中点为Q,
那么PQ为△CBP的中位线,
∴PB=PC=2.5,
∴△BPC的周长为8.
解:①当P在AC边上,CP=CB=3,
∴BP=
9+9

∴△BPC的周长为6+3
2


②P在AB边上,若BC=BP,
∴BP=3,CP=
6
5
5

∴△BPC的周长为6+
6
5
5

若PC=PB,
∴CP=3,BP=3.6;
∴△BPC的周长为9.6;
③若P在BC的垂直平分线上,
设BC的中点为Q,
那么PQ为△CBP的中位线,
∴PB=PC=2.5,
∴△BPC的周长为8.
考点梳理
等腰三角形的判定;勾股定理;勾股定理的逆定理.
由AB=5,BC=3,AC=4,利用勾股定理的逆定理可以得出∠C=90°,而点P是△ABC边上的一点,此时要分情况:①P在AC边上,CP=CB;②P在AB边上,BC=BP或PC=PB.③P在BC的垂直平分线上.确定位置后利用勾股定理即可求出△BPC的周长.
此题主要利用等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,找出符合实际条件的图形,再利用数学知识来求解.
找相似题