答案
解:∵△ABC为等腰直角三角形,AB=AC,

∴把△APB绕A点逆时针旋转90°可得到△AP′C,连PP′,如图,
∴∠P′AP=90°,P′A=PA=1,P′C=PB=3,
∴△PAP′为等腰直角三角形,
∴P′P=
PA=
,∠APP′=45°,
在△P′PC中,P′C=3,P′P=
,PC=
,
∵(
)
2+(
)
2=3
2,
∴PC
2+P′P
2=P′C
2,
∴△P′PC为直角三角形,∠CPP′=90°,
∴∠CPA=∠CPP′+∠APP′=90°+45°=135°.
解:∵△ABC为等腰直角三角形,AB=AC,

∴把△APB绕A点逆时针旋转90°可得到△AP′C,连PP′,如图,
∴∠P′AP=90°,P′A=PA=1,P′C=PB=3,
∴△PAP′为等腰直角三角形,
∴P′P=
PA=
,∠APP′=45°,
在△P′PC中,P′C=3,P′P=
,PC=
,
∵(
)
2+(
)
2=3
2,
∴PC
2+P′P
2=P′C
2,
∴△P′PC为直角三角形,∠CPP′=90°,
∴∠CPA=∠CPP′+∠APP′=90°+45°=135°.