试题
题目:
如图,正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识
(1)求△ABC的面积.
(2)判断△ABC是什么形状?并说明理由.
答案
解:(1)△ABC的面积=4×8-1×8÷2-2×3÷2-6×4÷2=13.
故△ABC的面积为13;
(2)∵正方形小方格边长为1
∴AC=
1
2
+
8
2
=
65
,AB=
3
2
+
2
2
=
13
,BC=
6
2
+
4
2
=2
13
,
∵在△ABC中,AB
2
+BC
2
=13+52=65,AC
2
=65,
∴AB
2
+BC
2
=AC
2
,
∴网格中的△ABC是直角三角形.
解:(1)△ABC的面积=4×8-1×8÷2-2×3÷2-6×4÷2=13.
故△ABC的面积为13;
(2)∵正方形小方格边长为1
∴AC=
1
2
+
8
2
=
65
,AB=
3
2
+
2
2
=
13
,BC=
6
2
+
4
2
=2
13
,
∵在△ABC中,AB
2
+BC
2
=13+52=65,AC
2
=65,
∴AB
2
+BC
2
=AC
2
,
∴网格中的△ABC是直角三角形.
考点梳理
考点
分析
点评
专题
勾股定理;三角形的面积;勾股定理的逆定理.
(1)用长方形的面积减去三个小三角形的面积即可求出△ABC的面积.
(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.
考查了三角形的面积,勾股定理和勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a
2
+b
2
=c
2
,则三角形ABC是直角三角形.
网格型.
找相似题
如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,则这个三角形为
直角三角形
直角三角形
.
已知a、b、c是△ABC的三边长,且满足|c
2
-a
2
-b
2
|+(a-b)
2
=0,则△ABC的形状是
等腰直角三角形
等腰直角三角形
.
已知梯形的上下底长分别是1.5cm和3.5cm,两条对角线的长分别是3cm和4cm,则此梯形的面积是
6
6
cm
2
.
如图,P是等边△ABC内一点,且PA=5,PC=12,PB=13,若△APB绕点A逆时针旋转60°后,得到△AP
1
C,则∠AP
1
C=
150°
150°
.
已知△ABC中,AB=10,AC=6,BC=8,若三条内角平分线交于点O,OG⊥AB于G,则AG的长度为
4
4
.