试题
题目:
如图,在△ABC中,AB=BC,∠ABC=90°,D是BC的中点,且它关于AC的对称点是D′,BD′=
5
,求AB的长.
答案
解:连结CD′,DD′,
∵AB=BC,∠ABC=90°,
∴∠ACB=45°,
∵D关于AC的对称点是D′,
∴AC垂直平分DD′,
∴CD=CD′,∠D′CD=90°,
又∵D是BC的中点,
∴BC=2CD=2CD′,
设CD′=x,则BC=2x,
∴在Rt△BCD′中,
由勾股定理得:CD′
2
+BC
2
=BD′
2
,
x
2
+(2x)
2
=(
5
)
2
,
解得:x=1,
∴CD′=1,CB=2,
∴AB=BC=2.
解:连结CD′,DD′,
∵AB=BC,∠ABC=90°,
∴∠ACB=45°,
∵D关于AC的对称点是D′,
∴AC垂直平分DD′,
∴CD=CD′,∠D′CD=90°,
又∵D是BC的中点,
∴BC=2CD=2CD′,
设CD′=x,则BC=2x,
∴在Rt△BCD′中,
由勾股定理得:CD′
2
+BC
2
=BD′
2
,
x
2
+(2x)
2
=(
5
)
2
,
解得:x=1,
∴CD′=1,CB=2,
∴AB=BC=2.
考点梳理
考点
分析
点评
勾股定理的逆定理;轴对称的性质.
连结CD′,DD′,D关于AC的对称点是D′,进而得到AC垂直平分DD′,CD=CD′,∠D′CD=90°,设CD′=x,则BC=2x,在Rt△BCD′中,利用勾股定理可得BC长,进而得到AB的长.
此题考查了勾股定理,以及轴对称的基本性质,关键是掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
找相似题
如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,则这个三角形为
直角三角形
直角三角形
.
已知a、b、c是△ABC的三边长,且满足|c
2
-a
2
-b
2
|+(a-b)
2
=0,则△ABC的形状是
等腰直角三角形
等腰直角三角形
.
已知梯形的上下底长分别是1.5cm和3.5cm,两条对角线的长分别是3cm和4cm,则此梯形的面积是
6
6
cm
2
.
如图,P是等边△ABC内一点,且PA=5,PC=12,PB=13,若△APB绕点A逆时针旋转60°后,得到△AP
1
C,则∠AP
1
C=
150°
150°
.
已知△ABC中,AB=10,AC=6,BC=8,若三条内角平分线交于点O,OG⊥AB于G,则AG的长度为
4
4
.