试题
题目:
(2007·大连)两个全等的Rt△ABC和Rt△EDA如图放置,点B、A、D在同一条直线上.
操作:在图中,作∠ABC的平分线BF,过点D作DF⊥BF,垂足为F,连接CE.证明BF⊥CE.
探究:线段BF、CE的关系,并证明你的结论.
说明:如果你无法证明探究所得的结论,可以将“两个全等的Rt△ABC和Rt△EDA”改为“两个全等的等腰直角△ABC和等腰直角△EDA(点C、A、E在同一条直线上)”,其他条件不变,完成你的证明,此证明过程最多得2分.
答案
证明:2BF=CE,且BF⊥CE.
过点E作EG⊥CB的延长线于点G.可得BDEG是矩形,即BD=EG,BG=DE,
设BC=AD=m,AB=DE=n.
∵BF是∠ABC的平分线,
∴∠DBF=45°,
又∵DF⊥BF,
∴∠FDB=45°,
∴△BFD是等腰直角三角形,
∴BF
2
+DF
2
=BD
2
,BF
2
+BF
2
=(AB+AD)
2
=(m+n)
2
,
∴BF=
2
2
(m+n).
又∵△CGE也是直角三角形,
∴CE
2
=CG
2
+GE
2
=(CB+BG)
2
+BD
2
=(CB+DE)
2
+(AB+AD)
2
=(m+n)
2
+(m+n)
2
=2(m+n)
2
∴CE=
2
(m+n).
由此可得,2BF=CE;
∵∠GCE=∠CBF=45°,
∴CE⊥BF.
证明:2BF=CE,且BF⊥CE.
过点E作EG⊥CB的延长线于点G.可得BDEG是矩形,即BD=EG,BG=DE,
设BC=AD=m,AB=DE=n.
∵BF是∠ABC的平分线,
∴∠DBF=45°,
又∵DF⊥BF,
∴∠FDB=45°,
∴△BFD是等腰直角三角形,
∴BF
2
+DF
2
=BD
2
,BF
2
+BF
2
=(AB+AD)
2
=(m+n)
2
,
∴BF=
2
2
(m+n).
又∵△CGE也是直角三角形,
∴CE
2
=CG
2
+GE
2
=(CB+BG)
2
+BD
2
=(CB+DE)
2
+(AB+AD)
2
=(m+n)
2
+(m+n)
2
=2(m+n)
2
∴CE=
2
(m+n).
由此可得,2BF=CE;
∵∠GCE=∠CBF=45°,
∴CE⊥BF.
考点梳理
考点
分析
点评
专题
等腰直角三角形;勾股定理.
过点E作EG⊥CB的延长线于点G.可得△BFD和△CGE是等腰直角三角形,可得BF=
2
2
(AB+AD),CE=
2
(AB+AD),由此可得,2BF=CE.
此题考查了角平分线的定义和直角三角形的性质,作辅助线是关键.此题比较难.
作图题;压轴题.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2010·朝阳区一模)如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为
1
8
1
8
.
(2009·阳泉二模)如图,把等腰Rt△ABC沿AC方向平移到等腰Rt△A′B′C′的位置时,它们重叠的部分的面积是Rt△ABC面积的一半.若AB=2cm,则它移动的距离AA′=
2
2
-2
2
2
-2
cm.
(2009·新昌县模拟)在如图平面直角坐标系中,B(0,1),△OBB
1
,△OB
1
B
2
,OB
2
B
3
…都是等腰直角三角形,则B
15
的坐标是
(-128,128)
(-128,128)
.
(2007·长宁区二模)如图,把腰长为4的等腰直角三角形折叠两次后,得到一个小三角形的周长是
4+2
2
4+2
2
.